Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C.

نویسندگان

  • Talaat Bashandy
  • Ludivine Taconnat
  • Jean-Pierre Renou
  • Yves Meyer
  • Jean-Philippe Reichheld
چکیده

NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of thioredoxins. There are two genes encoding NTRs (NTRA and NTRB) in the Arabidopsis genome, each encoding a cytosolic and a mitochondrial isoform. A double ntra ntrb mutant has recently been characterized and shows slower plant growth, slightly wrinkled seeds and a remarkable hypersensitivity to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis. In this paper, we demonstrate that this mutant also accumulates higher level of flavonoids. Analysis of transcriptome data showed that several genes of the flavonoid pathway are overexpressed in the ntra ntrb mutant. Accumulation of flavonoids is generally considered a hallmark of plant stress. Nevertheless, no elevation of the expression of genes encoding ROS-detoxification enzymes was observed, suggesting that the ntra ntrb plants do not suffer from oxidative disease. Another hypothesis suggests that flavonoids are specifically synthesized in the ntra ntrb mutant in order to rescue the inactivation of NTR. To test this, the ntra ntrb mutant was crossed with transparent testa 4 (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis. As ntra ntrb plants are more resistant to UV-C treatment than wild-type plants, this higher resistance was abolished in the ntra ntrb tt4 mutant, suggesting that accumulation of flavonoids in the ntra ntrb mutant protects plants against UV-light.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ntrB and ntrC genes are involved in the regulation of poly-3-hydroxybutyrate biosynthesis by ammonia in Azospirillum brasilense Sp7.

Azospirillum brasilense Sp7 and its ntrA (rpoN), ntrBC, and ntrC mutants have been evaluated for their capabilities of poly-3-hydroxybutyrate (PHB) accumulation in media with high and low ammonia concentrations. It was observed that the ntrBC and ntrC mutants can produce PHB in both low- and high-C/N-ratio media, while no significant PHB production was observed for the wild type or the ntrA mut...

متن کامل

Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.

NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant...

متن کامل

An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics.

The isolation and characterization of mutants hypersensitive to ultraviolet (UV) radiation has been a powerful tool to learn about the mechanisms that protect plants against UV-induced damage. To increase our understanding of the various mechanisms of defense against UVB radiation, we searched for mutations that would increase the level of tolerance of Arabidopsis plants to UV radiation. We des...

متن کامل

Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants

Plants establish highly and systemically organized stress defense mechanisms against unfavorable living conditions. To interpret these environmental stimuli, plants possess communication tools, referred as secondary messengers, such as Ca(2+) signature and reactive oxygen species (ROS) wave. Maintenance of ROS is an important event for whole lifespan of plants, however, in special cases, toxic ...

متن کامل

Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling.

Intracellular redox status is a critical parameter determining plant development in response to biotic and abiotic stress. Thioredoxin (TRX) and glutathione are key regulators of redox homeostasis, and the TRX and glutathione pathways are essential for postembryonic meristematic activities. Here, we show by associating TRX reductases (ntra ntrb) and glutathione biosynthesis (cad2) mutations tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular plant

دوره 2 2  شماره 

صفحات  -

تاریخ انتشار 2009